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A diffraction profile can be recorded for only a finite range around the peak. This leads to spurious oscilla- 
tions in the block-size distribution determined by means of the Fourier transform. The Bertaut [Acta Cryst. 
(1952), 5, 117-121] correction gives an approximate distribution gl(m) related to the real one g(m) by a 
convolution product with a function d(m), of the type (sin x)/x. A modified variant of the successive-con- 
volution unfolding method is proposed by considering the convolution product only over a finite size 
range where the distribution could be non-zero. The method was tested for two hypothetical distributions. 
A procedure to set the limits of the size interval is suggested. 

1. Introduction 

It is well known that for a line broadened only by the 
size effect the distributions of diameters perpendicular 
to the plane of reflexion of the crystalline blocks 
scattering coherently, could, in principle, be determined. 
Let I(X) be the line profile where X = 2dhkz COS (0 -- 0o)/2 
with dhk~ the corresponding interplanar distance, 2 the 
wavelength and 0 - 0 0  the departure from the Bragg 
angle, 0o, and i(m) its Fourier transform. As shown by 
Bertaut (1950), the distribution in diameters (as 
defined above) is given by 

(dZi~  
g(M) ..~ \-d-m~m2Jm=t ~ (1) 

o r  

g(M) .-~ X2I(X)e - 2~imxdx. (2) 
- - 0 0  

But, owing to both the presence of the other peaks 
and oscillations in the tails, where the experimental 
errors are the largest, the profile can be determined only 
over a finite range and the extrapolation [e.g. using a 
Cauchy function (de Bergevin & Germi, 1972)] is often 
a difficult matter. Therefore one has to introduce a 
'cut-off', analytically equivalent to multiplying the 
profile, after subtracting the background, by a passing 
step function defined as 

1 X e ( - - X l , X l )  (3) 
D(X)= 0 otherwise 

where - X ~  and +X1 are the cut-off points, which 
in  fact means using the function [I(X)-I(X1)]D(X) 
instead of I(X). As Bertaut (1952) soon realized and 
Young, Gerdes & Wilson (1967) emphasized later, this 
cut-off causes a severe alteration of the distribution. 

Bertaut has shown indeed that the second derivative 
of the 'observed'-profile transform is given by 

-d(m) + jg(M)d(m- M)dM (4) i'l'(m) = 
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where the subscript 1 stands for the entity affected by a 
measurement over a finite range only and d(m) is the 
Fourier transform of D 

d(m) = sin (2reX lm) (5) 
7zm 

The resulting 'observed' distribution, 
i ' D  

g x (m) = |g(m)d(m - M)d M, ( 6) 
d 

is considered close to the real one, g, if the profile is 
measured over a large enough range, 'out to a distance 
equal to five or six times its width'. When this condi- 
tion cannot be fulfilled, the size distribution determina- 
tion is of doubtful value. 

This paper reports on the possibility of improving 
the method at this stage by determining g(m) from (6) by 
an appropriate method of deconvolution. 

2. The method of deconvolution 

The equation to be solved for g(m) is the first-kind 
Fredholm integral equation 

L [ g(M) sin 2rc(M + re)X1 
~z(M +m) 

sin m)Xl 7 
+ re(M-m) J dM=gl(m). (7) 

gl(m) is subjected to errors, and so the problem is 
[in Hadamard's terms (see, for example, Lavrentiev, 
1967)] improperly posed, but since the weighting func- 
tion, d(m), is precisely known, we looked for a simpler 
method avoiding the difficulties of the regularization 
or statistical estimate methods (see, for example, Shaw, 
1972). The successive-convolution (van Cittert) method 
(Ergun, 1968) has relatively little tendency to amplify 
the fluctuations, but it should apparently fail since 
it is readily shown that d(m). d(m)=d(m) (. means 
convolution) and the process defined by 

gn I~=l(-1)J-l(n)d*(J-1) 1 = S * gl (8) 
J 



324 E L I M I N A T I O N  O F  T H E  F I N I T E - R A N G E  E F F E C T  

where • ( j -  1) in the exponent stands for ( j -  1) times 
convolution, reduces to 

g , =  ngl - ( n -  1)gl * d. (9) 

This can be noted too on Fig. 1 giving the results of 
the computer experiment (see below). 

As Warren & Mozzi (1975) pointed out, the decon- 
volution by the Fourier transform or by the methods 
of moments is also impossible when one deals with 
the function (sin x)/x. 

On the other hand, as indicated by Jones & Misell 
(1970) or by Ruland (1971), the successive-convolution 
method has to converge when 0 < D  < 2  for all values 
of D. Since this condition stems from lim ( 1 - D ) " = 0 ,  

n "* OO 

the convergence is fast if D is close to unity over the 
range where G1 (transform of gl) is not zero, i.e. 

It, - rt~ " ~ ' / ~ "  

1 2 s 

Fig. 1. 'Infinite-range' successive-folding method of deconvolution 
applied to the rectangular distribution for the case X1 =4/M1. 
Hypothetical (dotted line), 'experimental' (solid line) and convolu- 
tion-corrected (dashed line) distributions. 
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Fig. 2. Hypothet ical  distributions: (a) rectangular:  a = 1, b = 2a, c = 
3a; (b) normal  with two maxima:  a=0"7,  b =  1"I, c =  1"3, d =  1"7, 
e=2"4. 

within ( - X a ,  +X~). Outside this range D=O and the 
process is no longer convergent. 

Considering (3), we see that the iterative procedure 
is unconditionally convergent and should not be 
stopped unless the condition imposed, e.g. 

f lg~-g. *dldm<_e f lglldm (10) 

where e is an arbitrary small constant, is fulfilled. 
We note at first that for any selected (sieved) powder 

the range of the diameters has a lower and an upper 
limit, say 0~ and fl respectively. 

Then, a contribution from outside this range (0q fl), 
to the fold has no physical meaning. Let us introduce 
now a 'finite range' successive folding by defining the 
convolution product as 

d . g 1 - f l d ( m - M ) g ~ ( M ) d M  (11) 

and using it in (8) to compute the corrected function 
within the range (~, fl) and then, by 

g,(m)=gl(m)- f ld (m-M)g , (M)dM m~ R\(oqfl) (12) 

the function outside that range [the sign \ denotes the 
subtraction of the (e,/3) interval from the real manifold 
R]. Thus, after the iterative process has been com- 
pleted for the values within (e, fl), the function outside 
this range is computed by only one operation, (12). 

3. Test of the method 

A computer experiment has been performed to test the 
method by using two hypothetical distributions: a 
rectangular, gr(m) (Fig. 2a), and a normal with two 
maxima, gb(m) (Fig. 2b). 

The rectangular distribution is just that used by 
Bertaut (1952) to illustrate the effect of the finite range 

1 a<_m<_b 
gr(m)= 0 elsewhere. 

The second distribution is defined as 

gb(m) = 

A {exp - [v(m - mo) 2] - B} 
a+b 

m E (a,b), mo =- 2 

c+d 
and me (c,d), m o -  2 

The constants are chosen so that the function is 
continuous in a,b,c,d. (Actual ly,) ,=4.15883x 10 -2, 
B =0"015625.) 

First of all, the values of gl(m) were computed from 
(7) in a series of equidistant points covering the whole 
range of interest by considering three values of X l: 
1/M1, 2/M1 and 4/Ma, with M1 = f l - ~ .  

Then, the 'finite range' successive-convolution 

0 elsewhere. 
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method as defined by (11) and (12) was applied to 
obtain the 'corrected' distributions. The procedure 
was carried out until the fraction integral residue, as 
defined in (10), became lower than e=0 .05~ .  The 
hypothetical, 'experimental' and convolution-corrected 
distributions are plotted in Figs. 3 and 4 for the 
rectangular and normal distributions, respectively. 

In order to see how the assessment of~ and/3 in (11) 
and (12) determines the reliability of the proposed 
method, the procedure has been applied to the rec- 
tangular distribution by considering three different 
(e,/3) ranges: narrowed, enlarged and displaced. The 
narrowing and enlargement were by 25~o and the 
displacement by 12.5~ towards the low values, the 
width being unaltered in the last case. The results are 
plotted in Fig. 5. 

4. Discussion 

The failure of the 'infinite' successive-convolution 
method of unfolding is shown in Fig. 1. For the same 
case the 'finite' method results are plotted in Fig. 3(c). 

As a rule, for the rectangular case the distribution 
has been considered over a total range of 3M1. After 
the first iteration that produces a decrease of the 
fractional integral residue (10) from 1 to 0"8~, the next 
27 iterations decreased it only to 0"5~o and the 
spurious oscillations are higher than that in the 
'experimental' curve. 

For the 'exactly set' ~ and fl, the process has a fast 
convergence, decreasing the residue to 0.048~ [from 
2.59; this figure is higher than that corresponding to 
Fig. 1 since the fractional integral residue is now de- 
fined as 

fl Ig,,(m)* d - g l ( m ) l d m /  Igl(m)ldm] 

in 15 iterations and leading thus to a distribution 
extremely close to the hypothetical one (Fig. 3c). 

In the case of a low-range width [Figs. 3(a) and 4(a)] 
which the method is intended to deal with, the un- 
folded curves are realistic representations of the dis- 
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Fig. 3. 'Finite-range'  successive-folding method  of deconvolut ion  applied to the rectangular  distr ibution for the cases: (a) X1 = 1~M l, 
(b) XI  =2/M~ and (c) Xx =4/M~. The curve nota t ion is as in Fig. 1. 
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Fig. 4. 'Finite-range'  deconvolut ion  method  applied to a normal  distr ibution with two maxima. The cases are as in Fig. 3 and the curve notat ion 
as in Fig. 1. 
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Fig. 5. 'Finite-range' successive-folding method of deconvolution applied to the rectangular distribution for X1 = 4/M1 :(a) range narrowed by 
25~, (b) range enlarged by 2570 and (c) range displaced by 12.570 towards the low values. Hypothetical (dotted line) and convolution- 
corrected (solid line) distributions. (Range shown by -t k). 

tributions, giving a correct area and an approximate 
width, and qualitatively, the shape. By comparison of 
the 'realistic' curves in Fig. 4, one can see, however, that 
a recording over a range as large as two or three line 
widths is required in order to determine accurately the 
block-size distribution. 

The initial residue is, as expected, decreasing with 
the range of intensity recording but the rate of con- 
vergence is decreasing. This is a feature of the method, 
the iterative process leading asymptotically to the real 
function (disregarding error accumulation). 

It is to be noted by considering Fig. 5 that if one of 
the ends assumed to be limiting the range of non-zero 
values of the distribution is inside the correct range, 
high spurious oscillations have been introduced. If the 
assessed range is too broad, except for the behaviour 
at the ends (Fig. 5b) the shape is almost correct. 

These would suggest an iterative method for the 
correct assessment of ~ and fl when applying the 'finite 
range' unfolding. A low multiple of dhkz and the size of a 
(polycrystalline) grain could be taken respectively as 
initial values of e and ft. Noting that the first few itera- 
tions are the most 'efficient', the 'finite-range' unfolding 
has to be carried out with, say, three or five steps by 
narrowing each time the (~,fl) range until the measure 
of oscillation magnitude outside the distribution range 

becomes too high (this would show the range is too 
narrow and the last assessed c~ and/3 are to be con- 
sidered correct). For  instance, one could try to minimize 

fR Ig(m)ldm [ e+  =(0, oo)] 
+ \(~, #) 

and stop the rangenarrowing when this function begins 
to increase. 
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